Two researchers, one from the University of Arizona and one from Stanford University, recently published an article in which they analyzed segments of Neanderthal ancestry in the modern human genome related to virus resistance. They ultimately found 152 introgressed gene fragments. They then tested these fragments to try to address their “poison-antidote” hypothesis. Their hypothesis was that as the two species exposed each other to new viruses, they also exchanged virus-interaction proteins (VIPs), which allowed them to have some resistance to these viruses without developing these proteins through natural mutations. These VIPs interact with a variety of RNA viruses such as modern-day HIV, influenza A, and hepatitis C. The specific RNA virus-based VIPs are seen in higher proportions in European than East Asian populations. Most of these introgressed segments in modern humans originated from the second major interbreeding event. This type of analysis of introgressed segments can also be used to detect ancient epidemics. This study can have profound impacts on ancient genetic epidemiology and understanding how these introgressed segments impact the human genome as discussed in recent news articles such as this one.
Joshua Porter
No comments:
Post a Comment