Scientists have recently discovered a way to make somatic cells into sperm and egg cells in vitro in mice (iPSC cells). They do this by injecting somatic cells with a cocktail of genes that generate transcription factors that then tricks the cell to into thinking it is a different type. To turn the cells into gametes, the iPSCs receive chemical signals from the tissues in the ovaries or sperm cells. Once the cells are induced they can then be planted back into the mouse to mature to their full development. This study has not been conducted on humans yet, however, this great of leap in science could lead to genetically modifying human offspring. It would also allow same sex partners to have a genetically related child, and even a single parent to create a child from 100% of their cells.
https://www.theguardian.com/science/2018/oct/14/scientists-create-sperm-eggs-using-skin-cells-fertility-ethical-questions?CMP=share_btn_link
This is the blog for GW students taking Human Evolutionary Genetics. This site is for posting interesting tidbits on: the patterns and processes of human genetic variation;human origins and migration; molecular adaptations to environment, lifestyle and disease; ancient and forensic DNA analyses; and genealogical reconstructions.
GWHEG figure

Wednesday, October 17, 2018
Tuesday, October 16, 2018
Giraffes Inherit Their Spots From Their Mothers
Though slightly random due to being about giraffes this article titled Giraffes Inherit Their Spots From Their Mothers in the Science News Journal which referenced this study by the Journal of Life and Environmental Sciences which focuses on the spots of giraffes, how they are passed on from one generation to the next and ultimately how that impacts the survival of the offspring. Through photographic samples, parent-offspring regression statistics and field observation of the sampled giraffes the researchers found that there was an inheritable aspect of the spots for giraffe offspring. Those spots do have an impact on survival rates and though the fathers of these offspring were not included the similarity between offspring and parent indicates a correlation between coat patterns and survival rates of the offspring. The researchers found that circulatory and solidity patterns improved overall offspring survival fir neonates and juveniles. While results indicate high similarity to the mothers' coat patterns there are still many things to discover and expand upon with this research and the question of how the spot patterns relate genetically between offspring and mother as well has how those patterns impact survival.
Wednesday, October 10, 2018
High-Resolution Comparative Analysis of Great Ape Genomes
Leading as the feature article in Vol. 360 of Science Magazine, the Great Ape Genome project was a multi-institutional study involving over 40 scientist who generated higher quality assemblages of genomes from the great apes; humans, chimpanzee, gorillas, & orangutans. By using single-molecule, real-time (SMRT) long-read sequencing technology, the humanizing bias in previous ape genomes have been reduced allowing a more unambiguous view of genetic similarities and differences that arise as the hominin lineage diverged from the great apes. From their data, 10 million years ago the apes genome underwent a segmental duplication expansion where these sections of DNA that repeated were more prone to deletion and duplication mutations which influenced the evolutions of the various species. This support the hypothesis of bigger brain size in humans compared to other apes being due to the up-regulation of synaptic neurons in the prefrontal cortex because the gene for this neuron have been duplicate numerous times in the human genome. This article is the first step to truly understanding what makes us uniquely human because only by getting higher quality ape genome data and comprehensively comparing them can we understand our own genome and genetic difference.
-Denzel Walker
Recent Success of In Utero Gene Editing
In a recent Popular Science article, author Kat Eschner explains the content and future impacts of the Nature paper "In utero CRISPR-mediated therapeutic editing of metabolic genes". For the first time researchers used in utero base editing to treat a genetic disorder. The experiment was restricted to mice and many more successful studies need to be completed before researchers are able to begin human trials, but there were hopeful results. The researchers found that the mice who were treated in utero for their rare liver disease (HT1) with base editing, thrived in comparison to those mice not treated and even those treated after birth with nitisinone. Furthermore, the edited cells persisted through development. They discovered that Pcsk9 targeting decreased cholesterol levels and Hpd targeting resulted in 'rescuing' the deadly phenotype of HT1. The long term goal for this research is for base editing to be utilized in humans to prevent life-threatening genetic disorders.
Thursday, October 4, 2018
Genome-edited skin epidermal stem cells protect mice from cocaine-seeking behaviour and cocaine overdose
In this article gene therapy using CRISPR is used to modify the gene that produces the BChE protein. This protein hydrolyzes cocaine in the bloodstream; the unmodified protein is slow and inefficient. Using CRISPR the scientists have modified the gene in stem cells then implanted it back into the body under the skin. It is 4,440 times more efficient at hydrolyzing the drug, cost-efficient, and seems to be a long-term solution to cocaine addiction. The mice with the modified gene no longer craved the drug and were able to survive fatal doses of it. They hope to continue this research by testing on humans and possibly applying the process to other addictions such as alcohol and nicotine.
https://www.nature.com/articles/s41551-018-0293-z.pdf
https://www.theguardian.com/science/2018/sep/17/cure-for-cocaine-addiction-in-reach-say-scientists
https://www.nature.com/articles/s41551-018-0293-z.pdf
https://www.theguardian.com/science/2018/sep/17/cure-for-cocaine-addiction-in-reach-say-scientists
Tuesday, October 2, 2018
How Child Abuse Can Impact Your DNA
https://www.independent.co.uk/news/health/child-abuse-dna-trauma-genetics-molecular-scars-sperm-harvard-university-a8563906.html
"Child abuse leaves molecular 'scars' in DNA of victim's sperm, new study suggests"
A Harvard study consisting of thirty-four men, twenty-two of which had suffered abuse as children, found a significant difference in the amount of methylation present in the DNA of the abused men versus in the non-abused. Twelve locations of DNA were identified as being consistently affected by methylation in the men who had experienced abuse as children. While the newly discovered information proves how trauma has a long term impact on the abused individual, it also suggests that future generations can also be affected, due to the presence of methylation in sperm cells. The impact is still relatively unknown, but studies conducted with mice have shown that methylation in sperm cells has proven to have negative health impacts in offspring. While there hasn't been enough research done, it's possible that methylation markers could be used in the future in a legal setting as a tool to determine the approximate age of the person who has left DNA behind at a crime scene. The correlations between methylation and child abuse could also one day allow scientists to calculate the probability that someone has experienced child abuse. This study has provided a lot of information to potentially progress what we know about DNA methylation, but Dr. Andrea Roberts of Harvard says that study still remains to be replicated by others.
"Child abuse leaves molecular 'scars' in DNA of victim's sperm, new study suggests"
A Harvard study consisting of thirty-four men, twenty-two of which had suffered abuse as children, found a significant difference in the amount of methylation present in the DNA of the abused men versus in the non-abused. Twelve locations of DNA were identified as being consistently affected by methylation in the men who had experienced abuse as children. While the newly discovered information proves how trauma has a long term impact on the abused individual, it also suggests that future generations can also be affected, due to the presence of methylation in sperm cells. The impact is still relatively unknown, but studies conducted with mice have shown that methylation in sperm cells has proven to have negative health impacts in offspring. While there hasn't been enough research done, it's possible that methylation markers could be used in the future in a legal setting as a tool to determine the approximate age of the person who has left DNA behind at a crime scene. The correlations between methylation and child abuse could also one day allow scientists to calculate the probability that someone has experienced child abuse. This study has provided a lot of information to potentially progress what we know about DNA methylation, but Dr. Andrea Roberts of Harvard says that study still remains to be replicated by others.
The Dangers of DNA Testing
A recent article posted in the New York Times discusses the results of a study posted in Forensic Science International, exploring the possibility of error in forensic laboratory DNA testing. 108 different crime laboratories were sent the same DNA sample mixtures and asked to identify possible suspects in a crime. While almost all the labs correctly identified the major contributors of the "crime", 74 labs implicated an innocent third suspect. This study exposed high levels of variation among results received from various forensic laboratories, suggesting a possible need to standardize aspects such as training, etc. While these results do not necessarily imply innocent people are being sent to jail, they pose a question of preciseness of results in complex sample mixtures.
Allie Henderson
Subscribe to:
Posts (Atom)